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Rate autooscillations in a heterogeneous catalytic reac-
tion were first observed more than 30 years ago [1–3].
Some 60 heterogeneous systems showing an oscillatory
behavior on catalysts with various structures in a wide
pressure range (from ultrahigh vacuum to atmospheric
pressure) are presently known. In these systems, peri-
odic variations of reaction rate may take place at con-
stant values of external control parameters (the temper-
ature and partial pressures of gas-phase components)
and be accompanied by spatial self-organization phe-
nomena such as the adsorption-induced reconstruction
of the catalyst surface and chemical waves.

One of the most extensively studied heterogeneous
catalytic reactions exhibiting oscillatory dynamics is CO
oxidation on platinum catalysts. Depending on the cata-
lyst type and experimental conditions, the oscillation
of the CO + O

 

2

 

 reaction rate may be due to slow revers-
ible poisoning of the active catalyst surface [4–12],
adsorption-induced surface reconstruction, microface-
ting [13–16], or other phenomena.

Various mathematical models are used in detailed
analyses of the mechanism of the rate oscillations in
catalytic CO oxidation. They are generally based on the
a set of nonlinear ordinary differential equations
(ODEs) [12, 17–27]. These deterministic models are
called point models. They provide a theoretical descrip-
tion for experimentally observed stationary states, hys-
teresis, and reaction rate oscillations. However, point
deterministic models have found only limited applica-
tion and can be used in reaction dynamics analysis only
in a rather narrow range of external controls. Further-
more, they are inapplicable to the evolution of hetero-
geneous catalytic systems with significant internal fluc-
tuations. These systems include, for example, reactions

on a needle point, on active nanoclusters incorporated
in a porous support, and on supported catalysts.

Microscopic stochastic models using the Monte
Carlo method [22, 26–33] are the most promising for
theoretical investigation of the dynamics of fluctuating
reaction systems. These stochastic models are based on
detailed information concerning the elementary steps
of the reaction, the structure of the catalyst surface, and
the mobility of species in the adsorption layer. In a sto-
chastic model, it is possible to correctly take into
account the internal fluctuations, spatial correlations in
the adsorption layer, and other factors that cannot be
investigated using point models. The key problem in
stochastic modeling is to preliminarily determine the
domains of existence of qualitatively different solutions
in the space of external controls. For this purpose, the
bifurcation analysis of stationary and periodic solutions
using numerical parameter continuation methods is car-
ried out in ODE sets. The mathematical apparatus of
the qualitative analysis of stochastic models has not
been properly advanced as yet, even though the first
steps towards that end were promising [34, 35].

Therefore, the theoretical investigation and explana-
tion of complex dynamic phenomena on a catalyst sur-
face in the framework of one class of models cannot be
comprehensive. It is necessary to develop systems of
consistent mathematical models describing the evolu-
tion of reaction systems on different spatial scales. This
would allow the advantages of different classes of
mathematical models to be combined.

Here, this approach is applied to oscillatory regimes
of CO oxidation over platinum-group metal catalysts.
Different oxygen species were detected in experiments
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Abstract

 

—Rate oscillations are theoretically studied for the CO + O

 

2

 

 reaction proceeding according to a mod-
ified Langmuir–Hinshelwood mechanism on a platinum-group metal catalyst. A new hierarchical system of
consistent mathematical models is suggested for the identification of oscillatory regimes in the stochastic
model. This system includes the stochastic model based on the Monte Carlo method and a point deterministic
model in the medium field approximation. Three fundamentally different types of oscillatory behavior of the
stochastic model are revealed and studied. These are kinetic oscillations corresponding to autooscillations of
the point model, fluctuation-induced oscillations occurring in an excitable medium in the region of the unique
stable stationary solution of the point model, and fluctuation-induced random phase transitions between stable
stationary solutions of the point model in the bistability region. The effect of internal fluctuations (which are
inherent in stochastic models) on the oscillatory dynamics of the reaction is studied.
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on CO oxidation over palladium [4–6], platinum [7],
rhodium [8], and ruthenium [9], including oxygen
adsorbed on the catalytic surface, subsurface oxygen,
and oxygen in the catalyst bulk. In such heterogeneous
systems, oscillations of the CO oxidation rate can arise
from the slow reversible oxidation of the catalyst sur-
face (the TSM mechanism) [10–12]. Chemisorbed oxy-
gen can penetrate under the surface to form an oxide.
The oxidized surface has a low catalytic activity. The
surface is reduced through a reaction between metal
oxide and adsorbed CO. Note that the TSM mechanism
is a particular case of a feedback based on a hypothetical
inert substance (buffer) that is slowly and reversibly
adsorbed onto the active surface, thus oxidizing this sur-
face [17–19].

Here, we suggest a new system of consistent mathe-
matical models for investigation of the oscillatory
dynamics of the TSM mechanism of the CO + 

 

é

 

2

 

 reac-
tion on platinum group metals. This system includes a
microscopic stochastic model involving a Monte Carlo
dynamic algorithm [36] and a point deterministic
model as an ODE set obtained in the ideal adsorption
layer approximation [37, 38]. Although both models
are based on the same kinetic network for CO oxidation
by a modified Langmuir–Hinshelwood mechanism
[10–12], they may lead to qualitatively different results.
While the stochastic model allows for oscillatory reac-
tion regimes in a wide range of CO pressures, the deter-
ministic model may predict a single stationary state or
a multiplicity of stationary states and, accordingly, a
hysteresis at the same parameter values. The difference
between the models arises from the specific features of
processes at the atomic level, namely, spontaneous fluc-
tuations and spatial correlations in the adsorption layer,
which are taken into account by the stochastic model.

We distinguish and analyze three types of oscilla-
tory behavior of the reaction system within the stochas-
tic model.

The first type is to denote kinetic oscillations exist-
ing in the region of autooscillations in the point model.

The second type is to denote fluctuation-induced
oscillations in the region of existence of the single sta-
ble stationary solution of the ODE set. A necessary con-
dition for the onset of oscillations in the stochastic
model is that the point model has excitable dynamics,
which arise from a special spatial configuration of iso-
clines.

The third type of oscillatory dynamics is fluctua-
tion-induced transitions from one stationary state of the
point model to another in a bistable medium.

Here, we thoroughly investigate the mechanism of
realization of each type of oscillatory behavior of the
reaction system, as well as the role of internal fluctua-
tions and of the migration of adsorbed species. For this
purpose, we perform a qualitative analysis of the point
model, process time series calculated using the stochas-
tic and deterministic models, and construct energy
spectra and correlation functions.

MATHEMATICAL MODELS

 

Kinetic Network

 

The dynamics of catalytic CO oxidation in the
framework of the TSM kinetic network will be
described using the multicomponent two-dimensional
lattice gas model. As a rule, the reversible formation of
a surface oxide is considered in terms of two active-site
sublattices exchanging oxygen atoms, one on the sur-
face and the other in the subsurface layer. However,
under the assumption that the arrangement of adsorp-
tion sites on the surface is identical to the arrangement
of vacant sites in the subsurface layer and that oxide
oxygen completely disables all of the nearest adsorp-
tion sites on the surface, it is possible to consider a sin-
gle adsorption-site lattice [28, 29]. In this case, any lat-
tice site may be free (*) or occupied by an adsorbed car-
bon monoxide molecule CO

 

ads

 

, an adsorbed oxygen
atom O

 

ads

 

, or an adsorbed oxide oxygen atom .
The surface and the subsurface layer of the catalyst

will be modeled as a single regular two-dimensional
lattice of energetically equivalent adsorption sites with
a square unit cell (Fig. 1).

The TSM kinetic network includes the Langmuir–
Hinshelwood mechanism,
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Furthermore, we consider the migration of adsorbed
species via a vacant-site mechanism:
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Fig. 1.

 

 Schematic representation of the lattice gas model as
applied to CO oxidation by the TSM mechanism.
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Here, (CO)

 

gas

 

 and (O

 

2

 

)

 

gas

 

 are molecules in the gas
phase. Two-site processes occur on adjacent lattice
sites. The rate of a two-site process is defined for a pair
of sites, and the rate of a one-site process is defined for
one site. The surface oxide formation step (IV) is
viewed as a one-site process, and step (V) is a two-site
process. It is assumed that oxide oxygen retains its
reactivity (see step (V)) and markedly decreases the
activity of the catalyst in reactant adsorption from the
gas phase.

 

Basic Kinetic Equation

 

We will consider a terminal lattice fragment con-
taining 

 

N

 

 

 

×

 

 

 

N

 

 sites and impose periodic boundary con-
ditions. The evolution of fragment state probabilities in
the Markovian approximation is described by the basic
kinetic equation
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subject to the initial condition 
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 is the absolute probability of the state  at the

time point t; and λ(   , t) (s–1) is the rate of tran-

sition from the state  to the state  at the time point
t. The rate of transition is determined by the rates of
possible surface processes bringing the fragment from
one state to another and depends on the current state of
the lattice fragment.

Stochastic and Deterministic Models

Since the basic kinetic equation is a multidimen-
sional system even for a small lattice, it will be solved
by approximate methods. In Monte Carlo stochastic
modeling, state trajectories are constructed for the reac-
tion system in the state space. Stochastic models
describe the evolution of a selected lattice fragment at
the atomic level. Here, we use a dynamic Monte Carlo
algorithm with a variable time step [36].

Our deterministic description is based on the ideal
adsorption layer model. According to the above kinetic
network, the variation of COads, Oads, and  concen-
trations is described by a set of three ODEs derived

dP
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from Eq. (1) under the assumption that surface pro-
cesses are equiprobable on each lattice site:

(2)

with the initial conditions

θCO(t0) = , θO(t0) = , θO*(t0) = . (3)
Here, θCO(t), θO(t), and θO*(t) are the concentrations

of adsorbed CO molecules and O atoms and oxide oxy-
gen, respectively, and k1, k–1, k2, …, k8 are the rate con-
stants of elementary steps. The normalization condi-
tions are as follows: 0 ≤ θCO ≤ 1, 0 ≤ θO ≤ 1, 0 ≤ θO* ≤ 1,
and 0 ≤ θCO + θO + θO* ≤ 1.

The point deterministic model (2) describes the vari-
ation of average parameters of the reaction system. At the
same time, it allows a rigorous microscopic interpreta-
tion and its solutions can be approximated with any
degree of accuracy by solutions of the corresponding sto-
chastic model on condition that the state of the adsorp-
tion layer is nearly ideal. A good quantitative agreement
between the models can be achieved, for example, by
applying the Monte Carlo modeling method to a highly
mobile adsorption layer on a sufficiently large lattice.

Note that the ODE set (2) and the model presented
in [12] contain different expressions for the rate of sur-
face oxide formation (step (IV)).

RESULTS OF MATHEMATICAL MODELING

Theoretical study of the oscillatory dynamics of CO
oxidation at the atomic level in the framework of the
kinetic network (I)–(VIII) has been performed for more
than 10 years. Researchers’ primary concern has been
the search for the regions of reaction rate oscillations in
the parameter space. The purpose of this work is to
clear up the fundamental questions related to the nature
of the mechanisms of the oscillatory behavior of the
reaction within stochastic models on small lattices and
to the qualitative changes in the behavior of the reaction
system that will be brought about by increasing the lat-
tice size.

These questions were answered by the construction
and qualitative analysis of consistent mathematical
models describing the dynamics of the reaction on var-
ious space scales. The most detailed descriptions are
provided by Monte Carlo methods. However, using sto-
chastic modeling, it is difficult to predict the behavior
of the system and to offer a substantiated explanation
for observed phenomena, because no mathematical
apparatus has been developed for the a priori qualitative
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analysis of stochastic models. For solving these prob-
lems, we suggest a consistent deterministic model rep-
resented as an ODE set of low dimensionality and pro-
pose analyzing this system using the well-developed
theory of ODEs.

This approach allows the oscillatory behavior pat-
terns of CO oxidation within the stochastic model to be
classified. We distinguish and investigate autooscilla-
tions, fluctuation-induced oscillations, and fluctuation-
induced random reversible transitions between the
high- and low-reactivity states.

Autooscillations

One of the most adequate models for the CO + é2
reaction accompanied by the formation of a surface

oxide is the ODE set in COads, Oads, and  concen-
trations reported in [12]. This model satisfactorily
reproduces the basic qualitative features of CO oxida-
tion on the surface of a polycrystalline platinum wire.

We will use the following similar values of the rate
constants of the elementary steps at T = 550 K: k1 =

PCO = 3 × 103 s–1, k–1 = 3 × 102 s–1, k2 = 2.5 × 103 s–1,
k3 = 2.5 × 104 s–1, k4 = 0.11 s–1, and k5 = 6.5 × 10–3 s–1.

Let us set  = 104 s–1 Torr–1 [12].

The results of the Monte Carlo modeling of the
dynamics of the CO + é2 reaction on a 20 × 20 lattice
at a high mobility of adsorbed species (h = k6 = k7 = k8 =
105 s–1) are presented in Fig. 2. The state trajectories of
the reaction system are oscillations with a nearly con-
stant amplitude and a variable period. The solution of
the ODE set (2) at the same values of model parameters
is a limit cycle describing the kinetic oscillations
(Fig. 2b).

The projections of the limit cycle and of the princi-
pal isoclines of the point model on the phase plane (θO*,
θCO) at PCO = 0.3 Torr are shown in Fig. 3. The isoclines
intersect at the unstable stationary point. The arrange-
ment of the isocline curves is typical of relaxation oscil-
lations in a system with a small parameter. Here, this
parameter is the reciprocal reaction rate in the adsorp-
tion layer. Since this small parameter is implicitly
involved in the first two equations of the ODE set (2),
θCO and θO are rapid variables and θO* is a slow vari-
able. The oscillation period is primarily determined by
the time over which the reaction system moves along
the principal isoclines of the first two equations. The
movement of the system along the attractive branches
of the isoclines i1 and i3 (solid lines) means a compara-
tively rapid oxidation and a slow reduction of the cata-
lytic surface. The transitions from one attractive branch
to another are almost instantaneous.
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Fig. 2. Kinetic oscillations. PCO = 0.3 Torr. (a) θCO(t), θO(t), and θO*(t) curves obtained by the Monte Carlo method (h = 105 s–1;
20 × 20 lattice). (b) Comparison of the results of stochastic and deterministic modeling. The solid line is the projection of the limit
cycle of the ODE set (2) on the phase plane (θO*, θCO). Data obtained by the Monte Carlo method are shown as dots and are con-
nected with dotted lines.
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plane (θO*, θCO) at PCO = 0.3 Torr. The thin solid lines are the
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repulsive isocline branch i2, and + is the unstable stationary
point. The arrows show the directions of trajectories.
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Comparison of Figs. 2 and 3 suggests that the trajec-
tories of the reaction system in the stochastic model lie
near the attractive branches of the isoclines i1 and i3 of
the point model; however, the cycle narrows and the
oscillation period shortens. This specific feature is due
to the effect of internal fluctuations, which shift the
reaction system to the attraction domain of the other
isocline branch. An increase in the migration rate of
adsorbed species lowers the level of fluctuations in the
system, bringing the solution of the stochastic model
closer to the solution of the deterministic model. For a
better quantitative agreement between the models, it is
necessary to increase the lattice size or, in other words,
to consider a larger catalyst sample. As the mobility of
the adsorbed species decreases, the kinetic oscillations
are replaced by random fluctuations and then oxide poi-
soning of the catalyst.

For numerical analysis of the results of modeling,
let us construct amplitude Fourier spectra and autocor-
relation functions for the time series θCO(t) obtained
using the point model and the Monte Carlo method
(Fig. 4). The amplitude Fourier spectrum describes the
frequency distribution of the oscillation amplitude.
This spectrum for the point model is discrete. It corre-
sponds to complicated, periodic relaxation oscillations.
The spectrum obtained by the Monte Carlo method is
continuous. It shows a fundamental frequency and sev-

eral well-defined harmonics, indicating that the oscilla-
tions are near-periodic. The autocorrelation function
characterizes the degree of interdependence between
different time sections of a given function. The ampli-
tude spectra and autocorrelation functions for the time
series obtained by deterministic and stochastic model-
ing are in essence similar. The more rapid decrease of
the autocorrelation function in the latter case is
explained by the fact that the oscillations in the stochas-
tic model are less ordered.

Thus, in spite of the quantitative difference, the
reaction rate oscillations in the deterministic and sto-
chastic models are qualitatively the same. The surface
of the catalyst is periodically oxidized, passing into the
low-reactivity state, and is reduced, returning to the
high-reactivity state. The mechanism of these
autooscillations can be described as follows:

(1) Let the system be in a low-reactivity state char-
acterized by a high concentration of adsorbed CO
(θCO), a low concentration of adsorbed O (θO), a high
concentration of the surface oxide (θO*), and a low CO2
formation rate.

(2) Since there are very few adsorbed oxygen atoms
on the surface, the surface oxide does not form. The
reaction between COads and  slowly diminishes the
concentration of the latter. The surface undergoes
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reduction. θCO increases, but the total concentration
θCO + θO + θO* falls.

(3) As the concentration of vacant sites increases,
the probability of the adsorption of O2 molecules
grows. Oxygen atoms on the surface either react rapidly
with adsorbed CO or turn slowly into . The surface
reaction yields vacant sites, favoring further oxygen
adsorption. The rate of CO2 formation by the Lang-
muir–Hinshelwood mechanism increases, and the reac-
tion system passes into the high-reactivity state, which
is characterized by a high concentration of surface oxy-
gen, a low concentration of adsorbed CO, and a com-
paratively high rate of surface oxide formation.

(4) The gradual increase in θO* is accompanied by a
reduction in θO and in the rate of reaction in the
adsorbed layer. However, the total concentration of
adsorbed species increases due in part to the rapid one-
site adsorption of CO. As θCO increases, the system
approaches the low-reactivity state. The cycle is thus
closed.

Thus, the oscillatory behavior of the stochastic
model of the reaction system is observed in the
autooscillation region of the deterministic model. To
excite oscillatory dynamics at the atomic level, it is nec-
essary to reduce the internal fluctuations, which are
inherent in small-size systems because of the stochastic
nature of elementary surface processes. In particular,
the probability of the onset of the above oscillatory
regime is much higher at a high species mobility than
in a low-mobility or immobile adsorption layer.

In the last two sections, we will demonstrate that the
internal fluctuations can not only damp but also excite
reaction rate oscillations.

Oads*

Fluctuation-Induced Kinetic Oscillations

The stochastic model can execute oscillations that
do not correspond to the kinetic oscillations of the point
model and that take place in the region of parameters
where the ODE set (2) has a single stationary solu-
tion—another type of oscillations. Since these oscilla-
tions are near-regular, some authors mistakenly con-
sider them to be kinetic oscillations defining the limit
cycle of the point model [28]. We will set k1 = PCO =
1 s–1 at PCO = 10–7 Torr, k–1 = 0.2 s–1, k2 = 0.5 s–1, k3 =
105 s–1, k4 = 0.03 s–1, and k5 = 0.02 s–1, as was done in
[28].

Typical Monte Carlo state trajectories of the reac-
tion system are shown in Fig. 5. At the same parame-
ters, the point model (2) has a single stable stationary
state (point p1 in Fig. 5b).

Consider the phase portrait of the deterministic
model. In Fig. 6, we plot the trajectory of the system in
the phase plane (θO*, θCO) and show the isocline of the
first two equations, which intersects the isocline of the
third equation at two points. One of these points, with
the coordinates θCO = 0, θO = 0, and θO* =1, is at the
boundary of the physically possible concentration
region. It exists at all values of the parameters, is sad-
dle-type, and has no effect on the dynamic behavior of
the system. The other stationary point corresponds to
the above-mentioned stable stationary state p1. Near p1,
one can see trajectories that take the system away from
this point and approach the stable branch of the iso-
cline, i3. Next, these trajectories run along the branch i3
up to the turning point, at which this branch merges
with the unstable branch i2. Near the turning point, the
trajectories also make a turn to bring the system to the
other stable branch of the S-shaped isocline (i1), along
which the system returns to the stationary state p1.

This run of trajectories in the vicinity of the stable
stationary point is typical of an excitable medium. The
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method (h = 104 s–1; 20 × 20 lattice). (b) Comparison of modeling data.  is the projection of the stable stationary solution p1 of
the ODE set (2) on the phase plane (θO*, θCO). Monte Carlo data are plotted as dots and are connected with dotted lines.
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stationary point p1, which is stable both in the small and
globally, is unstable towards finite perturbations. Its
domain of attraction is small in some directions. A
slight finite perturbation will take the trajectory of the
system away from this point. After moving along the
stable branch i3, the system will return to its stationary
state.

The behavior of the stochastic model of the reaction
system is easy to predict. The fluctuations that increase
the CO and oxide oxygen coverage of the surface will
occasionally take the system away from the domain of
attraction of the stationary point p1. This is clear from
the phase portrait shown in Fig. 5b. Most of the time,
the reaction system is near the stable isocline branches
of the point model, i1 and i3, randomly jumping from
one to the other. As in the previous case, these oscilla-
tions correspond to an alternating oxidation and reduc-
tion of the surface. As the system moves along the
branch i1, θO* increases, implying the oxidation of the
surface. As the system moves along the branch i3, the
surface is reduced.

As the lattice size is increased, the effect of the inter-
nal fluctuations on the dynamics of the stochastic
model of the reaction system weakens. It can be stated
that, if the lattice is sufficiently large and the adsorption
layer is highly mobile, there will be a state correspond-
ing to the stable stationary state p1 of the deterministic
model (2).

Note the following feature of the reaction–diffusion
model, which is obtained by adding a diffusion term to
the point model: in an excitable medium, solitary pulses
running through the stable stationary point p1 are
excited in the one-dimensional case and helical waves
are observed in the two-dimensional case. It was found
that, on a small lattice, the oscillation pattern of the

mean concentrations in the stochastic model corre-
sponds to the running solitary pulses excited in the
reaction–diffusion model.

To characterize the oscillatory behavior of the reac-
tion system, we constructed an amplitude Fourier spec-
trum and an autocorrelation function for the time series
θCO(t) (Fig. 7). The amplitude spectrum shows a num-
ber of peaks and has a fundamental frequency with the
largest amplitude. The autocorrelation function proves
the existence of correlations in the time series exam-
ined. Therefore, this time series defines oscillations.

Thus, we have demonstrated in this section that, in
the parameter region where the point model has a single
stable stationary solution for an excitable medium, the
stochastic model may exhibit internal-fluctuation-
induced oscillations of the reaction rate and of the con-
centrations of adsorbed species. Below, we consider the
mechanism of oscillatory dynamics that is realized in
the region of two or more stationary solutions in the
deterministic model.
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Fluctuation-Induced Phase Transitions

Suppose that the phase portrait of the point model
has two or more attractors. It is expected in this case
that, if the fluctuations are sufficiently strong, the
dynamic behavior of the reaction system deduced by
Monte Carlo modeling will appear as reversible ran-
dom transitions from the vicinity of one attractor to the
vicinity of another. A behavior pattern typical of CO
oxidation by the TSM mechanism on platinum-group
metal catalysts is presented in Fig. 8a. The following
parameters are used here: k1 = PCO = 0.9 s–1 at PCO =
0.9 × 10–7 Torr, k–1 = 0.002 s–1, k2 = 0.5 s–1, k3 = 102 s–1,
k4 = 0.0003 s–1, k5 = 0.0002 s–1, and h = 0 s–1 [29].

It is clear from Fig. 8 that, most of the time, the sur-
face is mainly covered with adsorbed CO molecules.
The evolution of the reaction system consists of random
transitions from the state in which the surface is domi-
nated by COads to the state in which the surface is dom-

k1

inated by oxygen and vice versa. At the same rate con-
stants of the elementary steps, the macromodel has
three stationary states, two of which are stable.

Let us plot the isoclines and phase trajectories of the
ODE set (2). Figure 9 shows the projections of the
phase portrait of the system on the planes (θO*, θCO) and
(θO*, θO) at PCO = 0.9 × 10–7 Torr. The zero isocline of
the first two equations consists of three branches. The
branches i1 and i2 constitute one line, and the branch i3
is another line. The branches i3 and i1 are stable and
attract trajectories, and the branch i2 is unstable. The
points are the isoclines of the third equation. These iso-
clines intersect the isoclines i3, i1, and i2 at the station-
ary points p3, p1, and p2. The stable stationary point p1,
which represents the state with a low COads coverage of
the surface and high concentration of subsurface oxy-
gen, is situated near the turning point of the zero iso-
cline, at which the stable and unstable branches merge.
The domain of attraction of the point p1 is very small in
some directions. It is clear from Fig. 9 that, in a small
neighborhood of the stationary point p1, there are tra-
jectories that recede from this point. A slight increase in
θCO or θO* will take the system from the domain of
attraction of the point p1 and bring it to the stable state
p3, with a high COads coverage of the surface. To return
the system into the state p1, it is necessary to increase
θO and considerably decrease θCO so as to “step over”
the unstable branch i2. The resulting trajectories will be
attracted to the stable branch i1 and will run along this
isocline up to the point p1.

Let us describe the behavior of this system subject
to fluctuations. Return to Fig. 8. Small fluctuations of
the concentrations of adsorbed species do not allow the
system to stay in the state p1, with a low θCO and a high
θO. The new state, which is represented by the station-
ary point p3 and is characterized by a high COads cover-
age of the surface, arises as islets of adsorbed CO mol-
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ecules in many places at a time. At the same time, much
larger concentration fluctuations in the adsorption layer
are necessary for the system to pass from the state in
which the surface is dominated by COads to the state in
which the surface is mainly covered by oxygen. Such
fluctuations are comparatively unlikely, and the system
is in the state p3 most of the time. The forming phase
propagates as an oxygen wave throughout the surface.
Paradoxically, this wave propagates not through oxy-
gen migration but because of the absence of oxygen
migration.

Figure 10 illustrates this oscillatory behavior of the
reaction system.

(1) Let the system be in a low-reactivity state with a
high θCO and low θO and θO* (Figs. 10a, 10b).

(2) A fairly large, accidentally formed, oxygen-
dominated island is surrounded by a buffer of vacant
sites, which have resulted from the fast reaction
between Oads and COads (Fig. 10c). A pair of neighbor-
ing active sites, vacated owing to the reaction at the
boundary of the new phase, adsorbs a dioxygen mole-
cule by a dissociative mechanism, because oxygen is
adsorbed by a clean surface at a higher rate than CO.
The adsorbed oxygen atoms react with the nearest
COads molecules, displacing the buffer zone and mov-
ing apart the boundaries of the new phase until the old,
COads-dominated phase disappears.

(3) Part of the oxygen atoms that are inside the islet
of the new phase and are far from COads turn into oxide
oxygen (Fig. 10d). As θO* grows, the probability of
islets of the old phase reappearing on the surface

increases. The COads molecules and islets situated near
oxidized active sites ( ) are the most stable. On the
one hand, the surface oxide prevents the adsorption of
oxygen molecules from the gas phase and, accordingly,
the reaction between oxygen and COads. On the other
hand, the reaction between COads and  (step (V)) is
much slower than the reaction between COads and oxy-
gen on the surface (step (III)).

(4) As oxygen is removed from the catalyst surface,
the interaction between COads and  becomes the
main reaction pathway. Thus, the surface oxide, which
at first initiates the formation of islets of the COads-
dominated phase, is then entirely annihilated by this
phase (step (V)). The cycle is thus closed.

The observed oscillatory processes will be analyzed
in terms of the amplitude Fourier spectrum and the
autocorrelation function for the solution θCO(t) of the
stochastic model (Fig. 11). The continuous spectrum
and the correlation function, which decreases rapidly to
zero, are typical of random noise perturbations. Thus,
the spontaneous phase transitions in the stochastic
model cannot be assigned to periodic oscillations.

Further investigation demonstrated that taking into
account the mobility of the adsorbed species may lead
to a qualitatively different behavior pattern: the oscilla-
tion period increases, finally resulting in the complete
disappearance of phase transitions, and the system
comes to the stationary state p3, with a high COads cov-
erage of the surface.
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CONCLUSION

Three types of oscillatory dynamics were discov-
ered in the microscopic stochastic model and were
studied by mathematical modeling using heteroge-
neous CO oxidation as the model reaction. Two consis-
tent models were considered, namely, the stochastic
model based on the Monte Carlo method and the point
deterministic model in the ideal adsorption layer
approximation.

Two types of the oscillatory behavior of the stochas-
tic model can be viewed as kinetic oscillations, and the
third type is random phase transitions from one phase
state to another.

Two types of kinetic oscillations were discovered,
one occurring in the oscillating medium of the point
model and the other in an excitable medium. Oscilla-
tions of the first type can be observed in a near-ideal
adsorption layer on a face of a single crystal of macro-
scopic size. This behavior of the reaction system is

described by a set of ODEs. In smaller systems, these
oscillations do not always take place, because they may
be prevented by internal fluctuations.

Kinetic oscillations of the second type, which are
oscillations in an excitable medium, should most often
be observed on faces of single crystals in experiments
using instruments with a high space resolution, capable
of detecting helical waves and other spatiotemporal
phenomena. Catalyst particles are usually rather large,
and species diffusion on their surface should be taken
into account in modeling. It is helical or plane waves,
which usually appear spontaneously on defect sites,
that are responsible for the experimentally observed
macroscopic oscillations. The concentration waves
forming on the catalyst surface can be adequately
described using sets of partial differential equations of
the reaction–diffusion type. In the stochastic model,
these kinetic oscillations are induced by internal fluctu-
ations. Note that they will not occur in an ideal adsorp-
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tion layer. The corresponding ODE set implies a single,
stable, excitable, stationary state.

The third type of oscillatory dynamic can be
observed only in an adsorption layer in which the for-
mation of separate islets of a distinct phase is possible.
For a nucleus of a new phase to begin to grow, it is nec-
essary that the reaction kinetics have several stable sta-
tionary states. If this is the case, spontaneous transitions
between states at the atomic level are induced by fluc-
tuations caused by the nucleation and growth of islets
of different phases. Examination of the amplitude Fou-
rier spectra and the correlation matrix of the corre-
sponding time series demonstrated that these phase
transitions can be treated as kinetic oscillations.

The classification suggested here for the oscillatory
regimes of heterogeneous catalytic reactions is obvi-
ously not exhaustive. If the point deterministic model is
characterized by a more sophisticated bifurcation dia-
gram (for example, there are solutions as both a limit
cycle and an excitable stable stationary point), then
other nontrivial oscillatory behavior patterns will be
possible for the microscopic stochastic model.
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